martes, 12 de junio de 2007
PARTES DE LAS TARJETAS MADRES
Bueno. Ya que definimos el tipo de procesador según su precio y rendimiento debemos buscar ciertas características de la tarjeta madre. Cada procesador tiene el tipo de tarjeta madre que le sirve (Aunque algunos comparten el mismo tipo) por lo que esto define mas o menos la tarjeta madre que usaremos. Hoy en día las tarjetas madres traen incorporados los puertos seriales (Ratón, Scanner, etc ), los paralelos (Impresora) y la entrada de teclado, así que por eso no debemos preocuparnos.
El bus (El que envia la información entre las partes del computador) de casi todos los computadores que vienen hoy en día es PCI, EISA y los nuevos estándares: AGP para tarjetas de video y el Universal Serial Bus USB D
sábado, 9 de junio de 2007
Tecnologías, dispositivos y medios

Disco magnético
Disquete, usado para memoria fuera de línea
Disco duro, usado para memoria secundario
Cinta magnética, usada para memoria terciaria y fuera de línea.
En las primeras computadoras, el almacenamiento magnético se usaba también como memoria principal en forma de memoria de tambor, memoria de núcleo, memoria en hilera de núcleo, memoria película delgada, memoria de Twistor o memoria burbuja. Además, a diferencia de hoy, las cintas magnéticas se solían usar como memoria secundaria.
Las memorias en disco óptico almacenan información usando agujeros minúsculos grabados al ácido en la superficie de un disco circular. La información se lee iluminando la superficie con un diodo laser y observando la reflexión. Los discos ópticos son no volátil y de acceso secuencial. Los siguientes formatos son de uso común:
CD, CD-ROM, DVD: Memorias de solo lectura, usada par distribución masiva de información digital (música, vídeo, programas informáticos).
CD-R, DVD-R, DVD+R: Memorias de escritura única usada como memoria terciaria y fuera de línea.
CD-RW, DVD-RW, DVD+RW, DVD-RAM: Memoria de escritura lenta y lectura rápida usada como memoria terciaria y fuera de línea.
Blu-ray
HD-DVD
Se han propuesto los siguientes formatos:
HVD
Discos cambio de fase Dual
Las Memorias de disco magneto óptico son un disco de memoria óptica donde la información se almacena en el estado magnético de una superficie ferromagnética. La información se lee ópticamente y se escribe combinando métodos magnéticos y ópticos. Las memorias de discos magneto ópticos son de tipo no volátil, de acceso secuencial, de escritura lenta y lectura rápida. Se usa como memoria terciaria y fuera de línea.
Procesamiento de información de memorias múltiples
- Memoria sensorial.
Aunque la mayor parte de la investigación y teorización se ha concentrado en MCP y MLP, de manera lógica el lugar para comenzar está en lamemoria sensorial, ya que proporciona un informe preciso del ambiente como lo experimenta el sistema sensorial, es decir, se conserva una especie de "copia literal" del estímulo durante un breve periodo después de la exposición; se olvida cualquier información a la que no se presta atención o se procesa todavía más. Por tanto es claro que la memoria sensorial se relaciona en forma estrecha con el registro y es probable que sea más preciso y útil considerarla como parte del proceso de percepción y como un requisito necesario para el almacenamiento en sí.
- Memoria A Corto Plazo.
De acuerdo con Lloyd y colaboradores es probable que menos de una centésima de toda la información sensorial que cada segundo impacto contra los sentido humanos alcance la conciencia y, de esta, sólo una vigésima parte logre llegar a algo que se asemeje a un almacenamiento estable.Es claro que, si la capacidad de memoria se en encontrara limitada a la memoria sensorial, la capacidad para retener información acerca del mundo sería extremadamente limitada, lo mismo que precaria. Sin embargo, de acuerdo con los modelos de memoria tales como el modelo de almacenamiento múltiple de Atkinson y Shiffrin, parte de la información de la memoria sensorial se pasa con éxito a la MCP, lo que permite que se almacene la información durante el tiempo suficiente como para poder utilizarla, y por esta razón con frecuencia se le denomina memoria funcional. Puede mantenerse información de la MCP de 15 a 30 segundos pero puede extenderse mediante ensayo o repetición. Tiene una codificación acústica.
- Memoria a largo plazo.
En general se piensa que la MLP tiene una capacidad ilimitada. Se puede ver como un depósito de todas las cosas en la memoria que no se utilizan en el momento pero que potencialmente pueden recuperarse. Permite recuperar el pasado y utilizar esa información para lidiar con el presente; en cierto sentido, la MLP permite vivir de manera simultánea en el pasado y en el presente. La información puede mantenerse desde unos cuantos minutos hasta varios años (que, de hecho, pueden abarcar la vida entera del individuo). Su codificación es Semántica, Visual y Acústica.
Capacidad de las Memorias
Así como se espera tener mayores incrementos en la capacidad de procesadores en los próximos años, no es un abuso decir que la capacidad de memoria continuará creciendo de manera impresionante. Memorias de mayor capacidad podrán ser utilizadas por programas con tablas de hash de mayor envergadura, las cuales mantendrán la información en forma permanente.
- MINICOMPUTADORAS Se caracterizan por tener una configuración básica regular que puede estar compuesta por un monitor, unidades de diskette, disco, impresora, etc. Su capacidad de memoria varía de 16 a 256 kbytes.
- MACROCOMPUTADORAS Son aquellas que dentro de su configuración básica contiene unidades que proveen de capacidad masiva de información, terminales(monitores), etc. Su capacidad de memoria varía desde 256 a 512 kbytes, también puede tener varios megabytes o hasta gigabytes según las necesidades de la empresa.MICROCOMPUTADORAS Y COMPUTADORAS PERSONALES Con el avance de la microelectrónica en la década de los 70s resultaba posible incluir todos los componente del procesador central de una computadora en un solo circuito integrado llamado microprocesador. Esta fue la base de creación de una computadoras a las que se les llamo microcomputadoras. El origen de las microcomputadoras tuvo lugar en los Estados Unidos a partir de la comercialización de los primeros microprocesadores ( INTEL 8008, 8080 ) En la década de los 80s comenzó la verdadera explosión masiva, de las personal computer ( PC ) de IBM. Esta maquina basada en el microprocesador INTEL 8088 ) tenia características interesantes que hacían mas amplio su campo de operaciones, sobre todo porque su nuevo sistema operativo estandarizado ( MS-DOS, Microsoft Disk Operating Sistem ) y una capacidad mejorada de graficación, la hacían mas atractiva y fácil de usar. La PC a pasado por varias transformaciones y mejoras y se conocen como XT( Tecnología Extendida ), AT( Tecnología Avanzada ) y PS/2. Este es un resumen de los acontecimientos mas importantes 1971 Microprocesador INTEL 8008. Circuito de alta integración que luego daría inicio a las microcomputadoras. 1973 Microprocesador INTEL 8080. Nacimiento de la industria de la microcomputación. 1975 Aparece la microcomputadora APPLE. Aparece el microprocesador Zilog Z80. 1976 Microprocesador INTEL 8085. Microprocesador Mostek 6502 empleado por APPLE. 1981 IBM lanza la computadora personal conocida como PC-XT. 1984 IBM lanza la computadora personal conocida como PC-AT, basada en el microprocesador INTEL 80286. 1987 En todo el mundo se han vendido 60 millones de computadoras personales compatibles con la PC de IBM. 1988 IBM presenta la serie de computadoras personales PS/2 alguna de las cuales emplean el microprocesador INTEL 80386. 1991 Nuevos microprocesadores de muy alto rendimiento como son : INTEL 80486, MOTOROLA 68040,
Características de las memorias

Volatilidad de la información.
- La memoria voaltil requiere energía constante para mantener la información almacenada. La memoria volátil se suele usar solo en memorias primarias.
- La memoria no voaltil retendrá la información almacenada incluso si no recibe corriente eléctrica constantemente. Se usa para almacenamientos a largo plazo y, por tanto, se usa en memorias secundarias, terciarias y fuera de línea.
Memoria dinámica es una memoria volátil que que además requiere que periódicamente se refresque la información almacenada, o leída y reescrita sin modificaciones. Habilidad para acceder a información no contigua
- Acceso aleatorio significa que se puede acceder a cualquier localización de la memoria en cualquier momento en el mismo intervalo de tiempo, normalmente pequeño.
- Acceso secuencial significa que acceder a una unidad de información tomará un intervalo de tiempo variable, dependiendo de la unidad de información que fue leída anteriormente. El dispositivo puede necesitar buscar (posicionar correctamente el cabezal de lectura/escritura de un disco), o dar vueltas (esperando a que la posición adecuada aparezca debajo del cabezal de lectura/escritura en un medio que gira continuamente).
Habilidad para cambiar la información
- Las memorias de lectura/escritura o memorias cambiables permiten que la información se reescriba en cualquier momento. Una computadora sin algo de memoria de lectura/escritura como memoria principal sería inútil para muchas tareas. Las computadora modernas también usan habitualmente memorias de lectura/escritura como memoria secundaria.
- La memorias de solo lectura retiene la información almacenada en el momento de fabricarse y la memoria de escritura única (WORM) permite que la información se escriba una sola vez en algún momento tras la fabricación. También están las memorias inmutables, que se utilizan en memorias terciarias y fuera de línea. Un ejemplo son los CD-ROMs.
- Las memorias de escritura lenta y lectura rápida es una memoria de lectura/escritura que permite que la información se reescriba múltiples veces pero con una velocidad de escritura mucho menor que la de lectura. Un ejemplo son los CD-RW.
Direccionabilidad de la información
En la memoria de localización direccionable, cada unidad de información accesible individualmente en la memoria se selecciona con su dirección de memoria numérica. En las computadora modernas, la memoria de localización direccionable se suele limitar a memorias primarias, que se leen internamente por programas de computadora ya que la localización direccionable es muy eficiente, pero difícil de usar para los humanos.
En las memorias de sistema de archivos, la información se divide en Archivos informáticos de longitud variable y un fichero concreto se localiza en directorios y nombres de archivos legibles por humanos. El dispositivo subyacente sigue siendo de localización direccionable, pero el sistema operativo de la computadora proporciona la abstracción del sistema de archivos para que la operación sea más entendible. En las computadora modernas, las memorias secundarias, terciarias y fuera de línea usan sistemas de archivos.
En las Content-addressable memory, cada unidad de información leíble individualmente se selecciona con una valor hash o un identificador corto sin relación con la dirección de memoria en la que se almacena la información. La memoria de contenido direccionable pueden se construida usando software o hardware, siendo la opción hardware la opción más rápida y cara.
Tipos de Memorias
- RAM (memoria de acceso aleatorio): Éste es igual que memoria principal. Cuando es utilizada por sí misma, el término RAM se refiere a memoria de lectura y escritura; es decir, usted puede tanto escribir datos en RAM como leerlos de RAM. Esto está en contraste a la ROM, que le permite solo hacer lectura de los datos leídos. La mayoría de la RAM es volátil, que significa que requiere un flujo constante de la electricidad para mantener su contenido. Tan pronto como el suministro de poder sea interrumpido, todos los datos que estaban en RAM se pierden.
- ROM (memoria inalterable): Los ordenadores contienen casi siempre una cantidad pequeña de memoria de solo lectura que guarde las instrucciones para iniciar el ordenador. En la memoria ROM no se puede escribir.
- PROM (memoria inalterable programable): Un PROM es un chip de memoria en la cual usted puede salvar un programa. Pero una vez que se haya utilizado el PROM, usted no puede reusarlo para salvar algo más.
- EPROM (memoria inalterable programable borrable): Un EPROM es un tipo especial de PROM que puede ser borrado exponiéndolo a la luz ultravioleta.
- EEPROM (eléctricamente memoria inalterable programable borrable): Un EEPROM es un tipo especial de PROM que puede ser borrado exponiéndolo a una carga eléctrica.
RAM a menudo se confunde con el almacenamiento. Para una aclaración, comparemos la computadora la computadora con una oficina. El gabinete de archivos representa el almacenamiento (unidad de disco duro) y el escritorio representa la RAM. Los archivos a usar se recuperan del almacenamiento.
Mientras los archivos están en uso se guardan en la RAM, un área de trabajo de fácil acceso. Cuando los archivos dejan de usarse se regresan al sector de almacenamiento o se eliminan.
RAM, son las siglas para la memoria de acceso al azar, un tipo de memoria de computadora que se puede alcanzar aleatoriamente; es decir, cualquier byte de memoria puede ser alcanzado sin el tocar los bytes precedentes. La RAM es el tipo más común de memoria encontrado en ordenadores y otros dispositivos, tales como impresoras.
Hay dos tipos básicos de RAM:
Ambos tipos de RAM son volátiles, significando que pierden su contenido cuando se interrumpe el suministro de poder.
La RAM (memoria de acceso aleatorio) se refiere a veces como DRAM para distinguirla de la RAM estática (SRAM). La RAM estática es más rápida y menos volátil que la RAM dinámica, pero requiere más potencia y es más costosa.
RAM ESTÁTICA
Mientras que DRAM utiliza tiempos de acceso de cerca de 60 nanosegundos, SRAM puede dar los tiempos de acceso de hasta sólo 10 nanosegundos. Además, su duración de ciclo es mucho más corta que la de la DRAM porque no necesita detenerse brevemente entre los accesos.
Desafortunadamente, es también mucho más costoso producir que DRAM. Debido a su alto costo, SRAM se utiliza a menudo solamente como memoria caché.
MEMORIA ROM
Distinto de la memoria principal (RAM), la ROM conserva su contenido incluso cuando el ordenador se apaga. ROM se refiere como siendo permanente, mientras que la RAM es volátil.
La mayoría de los ordenadores personales contienen una cantidad pequeña de ROM que salve programas críticos tales como el programa que inicia el ordenador. Además, las ROM se utilizan extensivamente en calculadoras y dispositivos periféricos tales como impresoras láser, cuyas fuentes se salvan a menudo en las ROM.
Una variación de una ROM es un PROM (memoria inalterable programable). PROM son manufacturados como chips en blanco en los cuales los datos pueden ser escritos con dispositivo llamado programador de PROM.
LA UNIDAD DE MEMORIA
Los registros de un computadora digital pueden ser clasificados del tipo operacional o de almacenamiento. Un circuito operacional es capaz de acumular información binaria en sus flip-flops y además tiene compuertas combinacionales capaces de realizar tare as de procesamiento de datos.
Un registro de almacenamiento se usa solamente para el almacenamiento temporal de la información binaria. Esta informaci6n no puede ser alterada cuando se transfiere hacia adentro y afuera del registro. Una unidad de memoria es una colección de registros de almacenamiento conjuntamente con los circuitos asociados necesarios par a transferir información hacia adentro y afuera de los registros. Los registros de almacenamiento en una unidad de memoria se llaman registros de memoria.
La mayoría de los registros en un computador digital son registros de memoria, a los cuales se transfiere la informaci6n para almacenamiento y se encuentran pocos registros operacionales en la unidad procesadora. Cuando se lleva a cabo el procesamiento de datos, la información de los registros seleccionados en la unidad de memoria se transfiere primero a los registros operacionales en la unidad procesadora. Los resultados intermedios y finales que se obtienen en los registros operacionales se transfieren de nuevo a los registros de memoria seleccionados. De manera similar, la informaci6n binaria recibida de los elementos de entrada se almacena primero en los registros de memoria. La información transferida a los elementos de salida se toma de los registros en la unidad de memoria.
El componente que forma las celdas binarias de los registros en una unidad de memoria debe tener ciertas propiedades básicas, de las cuales las más importantes son: (1) debe tener una propiedad dependiente de dos estados par a la representación binaria. (2) debe ser pequeño en tamaño. (3) el costo por bit de almacenamiento debe ser lo mas bajo posible. (4) el tiempo de acceso al registro de memoria debe ser razonablemente rápido.
Ejemplos de componentes de unidad de memoria son los núcleos magnéticos los CI semiconductores y las superficies magnéticas de las cintas, tambores y discos.
Una unidad de memoria almacena información binaria en grupos llamados palabras, cada palabra se almacena en un registro de memoria. Una palabra en la memoria es una entidad de n bits que se mueven hacia adentro y afuera del almacenamiento como una unidad. Una palabra de memoria puede representar un operando, una instrucción, o un grupo de caracteres alfanuméricos o cualquier información codificada binariamente. La comunicación entre una unidad de memoria y lo que la rodea se logra por medio de dos señales de control y dos registros externos. Las señales de control especifican la dirección de la trasferencia requerida, esto es, cuando una palabra debe ser acumulada en un registro de memoria o cuando una palabra almacenada previamente debe ser transferida hacia afuera del registro de memoria. Un registro externo especifica el registro de memoria particular escogido entre los miles disponibles; el otro especifica la configuración e bits particular de la palabra en cuestión.
El registro de direcciones de memoria especifica la palabra de memoria seleccionada. A cada palabra en la memoria se le asigna un número de identificaci6n comenzando desde 0 hasta el número máximo de palabras disponible. Par a comunicarse con una palabra de memoria especifica, su número de localización o dirección se transfiere al registro de direcciones.
Los circuitos internos de la unidad de memoria aceptan esta dirección del registro y abren los caminos necesarios par a seleccionar la palabra buscar. Un registro de dirección con n bits puede especificar hasta 2n palabras de memoria.
Las unidades de memoria del computador pueden tener un rango entre 1.024 palabras que necesitan un registro de direcciones de bits, hasta 1.048.576= 22" palabras que necesitan un registro de direcciones de 20 bits.
Las dos señales de control aplicadas a la unidad de memoria se llaman lectura y escritura. Una señal de escritura especifica una función de transferencia entrante; una señal de lectura específica, una función de trasferencia saliente. Cada una es referenciada por la unidad de memoria.
Después de aceptar una de las señales, los circuitos de control interno dentro de la unidad de memoria suministran la funci6n deseada. Cierto tipo de unidades de almacenamiento, debido a las características de sus componentes, destruyen la informaci6n almacenada en una celda cuando se lea el bit de ella. Este tipo de unidad se dice que es una memoria de lectura destructible en oposici6n a una memoria no destructible donde la informaci6n permanece en la celda después de haberse leído. En cada caso, la informaci6n primaria se destruye cuando se escribe la nueva informaci6n. La secuencia del control interno en una memoria de lectura destructible debe proveer señales de control que puedan causar que la palabra sea restaurada en sus celdas binarias si la aplicaci6n requiere de una funci6n no destructiva.
La informaci6n transferida hacia adentro y afuera de los registros en la memoria y al ambiente externo, se comunica a través de un registro comúnmente llamado (buffer register) registro separador de memoria (otros nombres son registro de información y registro de almacenamiento). Cuando la unidad de memoria recibe una señal de control de escritura, el control interno interpreta el contenido del registro separador como la configuraci6n de bits de la palabra que se va a almacenar en un registro de memoria.
Con una señal de control de lectura, el control interno envía la palabra del registro de memoria al registro separador. En cada caso el contenido del registro de direcciones especifica el registro de memoria particular referenciado para escritura o lectura. Por medio de un ejemplo se puede resumir las características de trasferencia de informaci6n de una unidad de memoria. Considérese una unidad de memoria de 1.024 palabras con 8 bits por palabra. Par a especificar 1.024 palabras, se necesita una direcci6n de 10 bits, ya que 21° = 1.024. Por tanto, el registro de direcciones debe contener diez flip-flops. El registro separador debe tener ocho flip-flops para almacenar los contenidos de las palabras transferidas hacia dentro y afuera de la memoria. La unidad de memoria tiene 1.024 registros con números asignados desde 0 hasta 1.023.
La secuencia de operaciones necesarias par a comunicarse con la unidad de memoria par a prop6sitos de transferir una palabra hacia afuera dirigida al BR es:
1. Transferir los bits de direcci6n de la palabra seleccionada al AR.
2. Activar la entrada de control de lectura.
La secuencia de operaciones necesarias par a almacenar una nueva palabra a la memoria es:
1. Transferir los bits de direcci6n de la palabra seleccionada al MAR.
2. Transferir los bits de datos de la palabra al MBR.
3. Activar la entrada de control de escritura.
En algunos casos, se asume una unidad de memoria con la propiedad de lectura no destructiva. Tales memorias pueden ser construidas con CI semiconductores. Ellas retienen la informaci6n en el registro de memoria cuando el registro se catea durante el proceso de lectura de manera que no ocurre pérdida de informaci6n. Otro componente usado comúnmente en las unidades de memoria es el núcleo magnético. Un núcleo magnético tiene la característica de tener lecturas destructivas, es decir, pierde la informaci6n binaria almacenada durante el proceso de lectura.
Debido a la propiedad de lectura destructiva, una memoria de núcleos magnéticos debe tener funciones de control adicionales par a reponer la palabra al registro de memoria. Una señal de control de lectura aplicada a una memoria de núcleos magnéticos transfiere el contenido de la palabra direccionada a un registro externo y al mismo tiempo se borra el registro de memoria. La secuencia de control interno en una memoria de núcleos magnéticos suministra entonces señales apropiadas par a causar la recuperaci6n de la palabra en el registro de memoria. La trasferencia de informaci6n de una memoria de núcleos magnéticos durante una operación.
Una operación de lectura destructiva transfiere la palabra seleccionada al MBR pero deja el registro de memoria con puros ceros. La operación de memoria normal requiere que el contenido de la palabra seleccionada permanezca en la memoria después de la operación de lectura. Por tanto, es necesario pasar por una operación de recuperación que escribe el valor del MBR en el registro de memoria seleccionada. Durante la operación de recuperaci6n, los contenidos del MAR y el MBR deben permanecer in variables.
Una entrada de control de escritura aplicada a una memoria de núcleos magnéticos causa una trasferencia de información. Para transferir la nueva información a un registro seleccionado, se debe primero borrar la información anterior borrando todos los bits de la palabra a 0. Después de hacer lo anterior, el contenido del MBR se puede transferir a la palabra seleccionada. El MAR no debe cambiar durante la operación para asegurar que la misma palabra seleccionada que se ha borrado es aquella que recibe la nueva información.
Una memoria de núcleo magnético requiere dos medios ciclos par a leer o escribir. El tiempo que se toma la memoria par a cubrir los dos medios ciclos se llama tiempo de un ciclo de memoria.
El modo de acceso de un sistema de memoria se determina por el tipo de componentes usados. En una memoria de acceso aleatorio, se debe pensar que los registros están separados en el espacio, con cada registro ocupando un lugar espacial particular en una memoria de núcleos magnéticos.
En una memoria de acceso secuencial, la informaci6n almacenada en algún medio no es accesible inmediatamente pero se obtiene solamente en ciertos intervalos de tiempo. Una unidad de cinta magnética es de este tipo. Cada lugar de la memoria pasa por las cabezas de lectura y escritura a la vez pero la información se lee solamente cuando se ha logrado la palabra solicitada. El tiempo de acceso de una memoria es el tiempo requerido par a seleccionar una palabra o en la lectura o en la escritura. En una memoria de acceso aleatorio, el tiempo de acceso es siempre el mismo a pesar del lugar en el espacio particular de la palabra. En una memoria secuencial, el tiempo de acceso depende de la posici6n de la palabra en el tiempo que se solicita. Si la palabra esta justamente emergiendo del almacenamiento en el tiempo que se solicita, el tiempo de acceso es justamente el tiempo necesario par a leerla o escribirla. Pero, si la palabra por alguna razón esta en la última posición, el tiempo de acceso incluye también el tiempo requerido para que todas las otras palabras se muevan pasando por los terminales.
Así, el tiempo de acceso a una memoria secuencial es variable.
Las unidades de memoria cuyos componentes pierden información almacenada con el tiempo o cuando se corta el suministro de energía, se dice que son volátiles. Una unidad de memoria de semiconductores es de esta categoría ya que sus celdas binarias necesitan potencia externa par a mantener las señales necesarias. En contraste, una unidad de memoria no volátil, tal como un núcleo magnético o un disco magnético, retiene la información almacenada una vez que se hay a cortado el suministro de energía.
Esto es debido a que la información acumulada en los componentes magnéticos se manifiestan por la dirección de magnetización, la oval se retiene cuando se corta la energía. Una propiedad no volátil es deseable en los computadores digitales porque muchos programas útiles se dejan permanentemente en la unidad de memoria. Cuando se corte el suministro de energía y luego se suministre, los programas almacenados previamente y otra información no se pierden pero continúan acumulados en la memoria.
Métodos de direccionamiento
Hemos visto que generalmente (aunque no necesariamente) una instrucción consta de una parte de operación y una de dirección. La parte de dirección puede contener la dirección de un operando utilizado en la ejecución de la instrucción. En otras ocasiones la parte dirección de la instrucción puede no contener la dirección donde se encuentra el operando, sino la dirección donde se encuentra la dirección del operando. En el primer caso la dirección se describe como la dirección directa; en el segundo caso es una operación indirecta. En las computadoras, minicomputadoras y microcomputadoras se emplea una amplia gama de modos de direccionamiento de los que consideraremos algunos en esta sección.
- DIRECTO. En el direccionamiento directo, como ya señalamos, la instrucción contiene la dirección de la posición de memoria donde se encuentra el operando.
- INDIRECTO. En el direccionamiento indirecto, señalamos de nuevo, la dirección contiene no la dirección donde se encuentra el operando, sino la dirección donde se encuentra la dirección del operando.
- RELATIVO. En el direccionamiento relativo la parte dirección de la instrucción contiene el número N. En memoria la dirección del operando se encuentra sumando el numero N al número del contador del programa.
- INDEXADO. En el direccionamiento indexado como en el relativo, la parte dirección de la instrucción contiene un numero N que puede ser positivo o negativo. Sin embargo para utilizar el direccionamiento indexado, el computador debe estar equipado con un registro especial empleado para permitir direccionamiento indexado, y denominado naturalmente registro índice. La posición de memoria donde se localiza el operando se encuentra mediante la suma I + N.
- REGISTRO INDIRECTO. Algunos computadores que incorporan la facultad del direccionamiento de registro indirecto tienen un registro especial, a menudo llamado registro (P). Este registro contiene la dirección de memoria del operando. Una instrucción que invoque realmente direccionamiento de registro indirecto no tiene bits significativos en su parte dirección. En lugar de ello, la instrucción completa se incluye en los bits asignados a la parte de operación de la instrucción. Una instrucción típica que use un registro de direccionamiento indirecto debería especificar "cargar" el acumulador con el operando localizado en la dirección de memoria dada en el registro (p).
- INMEDIATO. EN el direccionamiento inmediato, la parte de dirección de la instrucción contiene no la dirección del operando sino el mismo operando.
- INHERENTE. Ordinariamente una dirección que es parte de una instrucción se refiere a una posición de memoria. Cuando una instrucción indica una fuente o un destino de datos y no se direcciona específicamente, ya no se hace referencia a la posición de memoria, se dice que la instrucción tiene una dirección inherente.
¿Ques memoria?

Cada ordenador viene con cierta cantidad de memoria fisica, referida generalmente como memoria principal o RAM. Se puede pensar en memoria principal como arreglo de celdas de memoria, cada una de los cuales puede llevar a cabo un solo byte de información.
Un ordenador que tiene 1 megabyte de la memoria, por lo tanto, puede llevar a cabo cerca de 1 millón de bytes (o caracteres) de la informació.
La memoria funciona de manera similar a un juego de cubículos divididos usados para clasificar la correspondencia en la oficina postal. A cada bit de datos se asigna una dirección. Cada dirección corresponde a un cubículo (ubicación) en la memoria.
Para guardar información en la memoria, el procesador primero envía la dirección para los datos. El controlador de memoria encuentra el cubículo adecuado y luego el procesador envía los datos a escribir.
Para leer la memoria, el procesador envía la dirección para los datos requeridos. De inmediato, el controlador de la memoria encuentra los bits de información contenidos en el cubículo adecuado y los envía al bus de datos del procesador.